Skip to main content

AI Insights & Predictive Analytics

Overzicht

PulseGuard’s AI-gedreven inzichten gebruiken machine learning en predictive analytics om problemen te voorspellen voordat ze impact hebben op uw gebruikers. Het systeem leert van historische data en detecteert afwijkende patronen.

Predictive Analytics

Response Time Voorspellingen

{
  "response_time_predictions": {
    "model_type": "time_series_forecasting",
    "algorithm": "ARIMA + LSTM",
    "training_data_period": "90_days",
    "prediction_horizon": "24_hours",
    "confidence_intervals": [0.80, 0.95],
    "accuracy_metrics": {
      "mae": 45.2,  // Mean Absolute Error in milliseconds
      "rmse": 67.8, // Root Mean Square Error
      "mape": 8.5   // Mean Absolute Percentage Error
    }
  }
}

Failure Prediction

{
  "failure_prediction": {
    "models": {
      "domain_failure": {
        "features": ["response_time_trend", "error_rate", "ssl_expiry_days", "dns_changes"],
        "algorithm": "Random Forest",
        "accuracy": 0.87,
        "false_positive_rate": 0.03
      },
      "service_failure": {
        "features": ["cpu_usage", "memory_usage", "connection_count", "error_logs"],
        "algorithm": "Neural Network",
        "accuracy": 0.92,
        "prediction_window": "2_hours"
      }
    }
  }
}

Anomaly Detection

Real-time Anomaly Detection

{
  "anomaly_detection": {
    "algorithms": {
      "statistical": {
        "method": "z_score",
        "threshold": 3.0,
        "seasonal_adjustment": true
      },
      "machine_learning": {
        "method": "isolation_forest",
        "contamination": 0.1,
        "features": ["cpu", "memory", "disk", "network"]
      }
    },
    "sensitivity_levels": {
      "low": { "false_positive_rate": 0.05 },
      "medium": { "false_positive_rate": 0.02 },
      "high": { "false_positive_rate": 0.01 }
    }
  }
}

Pattern Recognition

{
  "pattern_recognition": {
    "recurring_patterns": {
      "daily_peak_load": {
        "pattern": "increased_load_9am_5pm",
        "confidence": 0.95,
        "impact": "cpu_usage +25%"
      },
      "weekend_maintenance": {
        "pattern": "service_restart_saturday_2am",
        "confidence": 0.88,
        "impact": "5_min_downtime"
      }
    },
    "seasonal_patterns": {
      "holiday_traffic": {
        "pattern": "traffic_spike_christmas",
        "prediction_accuracy": 0.91
      }
    }
  }
}

Smart Alerting

Context-aware Alerts

{
  "smart_alerts": {
    "context_analysis": {
      "business_hours": {
        "timezone": "Europe/Amsterdam",
        "working_hours": "09:00-17:00",
        "severity_multiplier": 1.5
      },
      "peak_hours": {
        "defined_peaks": ["12:00-13:00", "18:00-20:00"],
        "alert_suppression": false
      }
    },
    "suggested_actions": {
      "high_cpu": {
        "alert": "CPU usage above 90%",
        "suggestions": [
          "Scale up instance",
          "Check running processes",
          "Review recent deployments"
        ]
      },
      "memory_leak": {
        "alert": "Memory usage steadily increasing",
        "suggestions": [
          "Restart application",
          "Check for memory leaks",
          "Increase instance size"
        ]
      }
    }
  }
}

Alert Prioritization

{
  "alert_prioritization": {
    "scoring_factors": {
      "severity": 0.4,
      "affected_users": 0.3,
      "business_impact": 0.2,
      "historical_frequency": 0.1
    },
    "priority_levels": {
      "critical": { "score_threshold": 0.8, "escalation_time": "5_min" },
      "high": { "score_threshold": 0.6, "escalation_time": "15_min" },
      "medium": { "score_threshold": 0.4, "escalation_time": "1_hour" },
      "low": { "score_threshold": 0.2, "escalation_time": "4_hours" }
    }
  }
}

Root Cause Analysis

Automated RCA

{
  "root_cause_analysis": {
    "correlation_engine": {
      "time_window": "1_hour",
      "correlation_threshold": 0.7,
      "metrics_analyzed": ["cpu", "memory", "disk", "network", "logs"]
    },
    "causality_graph": {
      "nodes": ["web_server", "database", "load_balancer", "cdn"],
      "edges": [
        {"from": "web_server", "to": "database", "correlation": 0.85},
        {"from": "database", "to": "load_balancer", "correlation": 0.72}
      ]
    }
  }
}

AI-generated Explanations

{
  "ai_explanations": {
    "incident_analysis": {
      "incident_id": "inc-123",
      "root_cause": "Database connection pool exhaustion due to traffic spike",
      "confidence": 0.89,
      "evidence": [
        "Connection count increased 300% in 10 minutes",
        "Database CPU usage reached 95%",
        "Application logs show 'connection timeout' errors",
        "Similar pattern occurred 2 weeks ago after marketing campaign"
      ],
      "recommended_actions": [
        "Increase connection pool size from 50 to 100",
        "Implement connection pooling circuit breaker",
        "Add database performance monitoring"
      ]
    }
  }
}

Performance Insights

Bottleneck Detection

{
  "bottleneck_detection": {
    "performance_analysis": {
      "slowest_components": [
        {
          "component": "database_queries",
          "avg_response_time": 1200,
          "bottleneck_probability": 0.75,
          "recommendations": ["Add database indexes", "Optimize queries"]
        },
        {
          "component": "external_api_calls",
          "avg_response_time": 800,
          "bottleneck_probability": 0.60,
          "recommendations": ["Implement caching", "Use async calls"]
        }
      ]
    }
  }
}

Capacity Planning

{
  "capacity_planning": {
    "resource_forecasting": {
      "cpu_forecast": {
        "current_usage": 65,
        "predicted_usage_30d": 78,
        "recommended_capacity": 85
      },
      "memory_forecast": {
        "current_usage": 70,
        "predicted_usage_30d": 82,
        "recommended_capacity": 90
      }
    },
    "scaling_recommendations": {
      "vertical_scaling": {
        "cpu_cores": "increase to 8",
        "memory_gb": "increase to 32",
        "cost_impact": "+$50/month"
      },
      "horizontal_scaling": {
        "additional_instances": 2,
        "load_balancer_config": "round_robin",
        "cost_impact": "+$120/month"
      }
    }
  }
}

Learning & Adaptation

Model Training

{
  "model_training": {
    "continuous_learning": {
      "enabled": true,
      "retraining_interval": "7_days",
      "data_retention": "1_year",
      "feedback_loop": {
        "user_feedback": true,
        "accuracy_tracking": true,
        "model_improvement": true
      }
    },
    "custom_models": {
      "business_specific": {
        "training_data": "company_logs_2023.json",
        "model_type": "custom_anomaly_detector",
        "accuracy_target": 0.95
      }
    }
  }
}

False Positive Reduction

{
  "false_positive_reduction": {
    "adaptive_thresholds": {
      "enabled": true,
      "learning_rate": 0.1,
      "minimum_samples": 1000,
      "confidence_threshold": 0.85
    },
    "feedback_system": {
      "user_corrections": true,
      "auto_learning": true,
      "model_recalibration": true
    }
  }
}

Integration met AI Providers

Google AI Integration

{
  "ai_providers": {
    "google_ai": {
      "models": ["gemini-pro", "palm-2"],
      "use_cases": ["natural_language_processing", "predictive_analytics"],
      "api_key_configured": true,
      "rate_limits": {
        "requests_per_minute": 60,
        "requests_per_day": 1000
      }
    }
  }
}

OpenAI Integration

{
  "openai_integration": {
    "models": ["gpt-4", "gpt-3.5-turbo"],
    "use_cases": ["incident_analysis", "chat_interface"],
    "api_key_configured": true,
    "fine_tuning": {
      "custom_model": "pulseguard-incident-analyzer",
      "training_data": "incident_logs_2023.json",
      "accuracy_improvement": 0.15
    }
  }
}

AI Chat Interface

Conversational Monitoring

{
  "chat_interface": {
    "capabilities": {
      "natural_language_queries": true,
      "voice_commands": false,
      "multi_language_support": ["nl", "en", "de"],
      "context_awareness": true
    },
    "example_queries": [
      "Is my website down?",
      "Show me CPU usage for the last hour",
      "What caused the incident yesterday?",
      "Predict when I'll need to scale my servers"
    ]
  }
}

Proactive Insights

{
  "proactive_insights": {
    "automated_reports": {
      "daily_insights": {
        "enabled": true,
        "delivery_time": "09:00",
        "content": ["performance_summary", "anomaly_highlights", "recommendations"]
      },
      "weekly_reports": {
        "enabled": true,
        "content": ["trend_analysis", "capacity_planning", "risk_assessment"]
      }
    }
  }
}

Privacy & Security

Data Privacy

{
  "data_privacy": {
    "ai_data_handling": {
      "data_minimization": true,
      "anonymization": true,
      "retention_limits": "2_years",
      "user_consent": true,
      "gdpr_compliance": true
    },
    "model_security": {
      "encrypted_models": true,
      "access_controls": true,
      "audit_logging": true
    }
  }
}

Explainable AI

{
  "explainable_ai": {
    "model_transparency": {
      "feature_importance": true,
      "decision_explanations": true,
      "confidence_scores": true,
      "bias_detection": true
    },
    "user_trust": {
      "confidence_intervals": true,
      "uncertainty_flags": true,
      "human_override": true
    }
  }
}

API Integration

AI Insights API

# Predictive analytics
GET /api/ai/predictions/domain/{id}

# Anomaly detection results
GET /api/ai/anomalies?period=24h

# AI-generated insights
GET /api/ai/insights/summary

# Root cause analysis
POST /api/ai/analyze-incident/{incident_id}

Model Management

# Model status
GET /api/ai/models/status

# Retrain model
POST /api/ai/models/{model_id}/retrain

# Model performance metrics
GET /api/ai/models/{model_id}/metrics

Best Practices

Implementation Strategy

  1. Start Small: Begin met basis anomaly detection
  2. Validate Results: Controleer AI voorspellingen handmatig eerst
  3. Gradual Adoption: Breid AI features geleidelijk uit
  4. Monitor Accuracy: Track en verbeter model performance

Data Quality

  1. Clean Data: Zorg voor accurate, consistente data
  2. Feature Engineering: Selecteer relevante features
  3. Data Labeling: Label incidenten voor supervised learning
  4. Continuous Monitoring: Monitor data quality continu

Human-AI Collaboration

  1. AI as Assistant: Gebruik AI voor inzichten, niet beslissingen
  2. Human Override: Altijd mogelijkheid tot manual override
  3. Feedback Loop: Geef feedback aan AI systemen
  4. Training: Train team in AI interpretatie

Performance Optimization

  1. Model Optimization: Balance accuracy vs performance
  2. Caching: Cache AI resultaten waar mogelijk
  3. Batch Processing: Process grote datasets efficient
  4. Resource Management: Monitor AI resource usage